The National Grid for electricity supply begins with fuel extraction and ends with consumption of power. The natural resources needed for this process are varied including coal, nuclear fuels, water, metals and impacts on every aspect of the environment from under the ground to the ozone layer.

Understanding the real impact of our increasing demand for electrical power on our environment means investigating the resources expended to extract, transport and use fuels, the aesthetics of the landscape, the infrastructure to transmit and distribute electricity and the growing societal dependence on a growing number of electrical devices.

Important dates in design, creation and continued development of the UK National Grid

supply Committee established
Williamson Report 1919
Electricity
Commissioners established
Electricity Supply
Corporation established
The Electricity
Supply Act 1922

Electric Power

Transport

Extraction

The Electricity
Supply act 1926
Central
Electricity Board
Created
Work begins on
the National Grid
Government
Scientist
Committee
established
Practical way to
remove sulphar
dioxide is
discovered
The 132kV grid
begins operation
in 1933

Weir Report 1926

The Grid is integrated 1938 Ministry of Fuel and Power is formed

The Electricity
Act 1947
Act 1945
Act 1945
Act 1947
Act 1

1906 The Clean Air Act 1956
The electricity Act 1957
The Central Electricity authority is dissolved and replaced by the Central Electricity Generating Board (CEGB) and the Electricity council 1957
The Electricity and Gas Act 1963
Fist 400 kV transmission line commissioned 1965

O The Gas and
Electricity Act
1968

The Power and the Water

"...these days of grave responsibility are also days of great privilege and opportunity. Never again shall we find the same mental and moral attitude which is necessary to bring such a scheme as outlined here to fruition. Let it not be said of us we failed.."

Ernest T Williams 1916, addressing the Institution of Electrical Engineers on his vision of a national electricity supply system Has connectivity of the grid disconnected people from energy generation and its effects?

Just 100 years ago heating, hot water and domestic chores were physically demanding tasks undertaken by the household itself. Today this is done through flicking switches and a proliferation of electrical devices.

Has the disconnect between fuel extraction and energy generation from the end consumer affected how we interact with the energy source itself, and its associated impacts? Can this connectivity be re-established and how should it be manifested in image, lifestyle and language?